碳纤维复合材料由碳纤维和树脂基体组成,拥有可设计性强、强度高、重 星轻、热膨胀系数低等特点,可作为结构件或功能件使用,是一种新兴材料,下面就就来将碳纤维复合材料结构件与传统的金属构件性能比较一下。
1、比度比模量:碳纤维增强环氧树脂基复合材料的轻质高强性能最为显著,其比强度比钢材高5倍,比铝合金高4倍,比模则是钢、铝的
4倍,这样性能优越的材料如果合理使用在结构构件中必然会有助于解决许多传统材料无法解决的难题。
2、耐疲劳性:通常金属材料疲劳强度极限是其拉伸强度的30% ~50% ,而碳纤维复合材料的疲劳强度极限为其拉伸强度的70%~ 80% ,说明在长期交变载荷条件下工作时,其构件的寿命高于传统材料构件。
3、阻尼减震性:受力结构的自振频率除了与形状有关外,还同结构材料的比模量平方根成正比,根据对比模的分析可知。碳纤维复合材料比金属有更高的自振频率,且其界面有较大的吸收振动的能力,碳纤维球拍,因而材料的阻尼较高,这些特性都有利于提高复合材料结构的抗震性能。
4、破损安全性:研究表明,碳纤维复合材料的破坏需经历基体损伤、开裂、界面脱粘、纤维断裂等-系列过程, 当少数增强纤维发生断裂时载荷又会通过基体的传递分散到其它完好的纤维上去,这些过程都能降低灾难性破坏突然发生的机率。而金属产生裂纹后损伤不断加重,外力并不能均匀分散。
碳纤维表面处理的目的主要是为了防止弱界面层的生产,并粗产生适合粘结的表面形态,改善树脂和增强材料的亲和力。碳纤维表面处理的方法-般分为氧化处理和非氧化处理,氧化处理的原理 是引入极性基团并消除弱性界面,非氧化处理的原理是沉积更活泼的碳和其他物质。
一.氧化法
气相氧化法:气相氧化是利用氧化性气体来氧化纤维表面,从而引入极性基团,大朗碳纤维球拍,并给与适宜的粗糙度来提高复合材料的剪切强度。
液相氧化法:液相氧化法主要是将碳纤维浸入到某种氧化性溶液中,通过氧化剂来氧化刻蚀碳纤维表面。使碳纤维表面所含的各种含痒极性基团和沟壑增多,有利于提高碳纤维和树脂之间界面的结合力。
气液双效氧化法:气液双效氧化法是指先用液相涂层,后用气相氧化,使碳纤维的自身抗拉强度及其复合材料的层间剪切度均得到提高。
电化学氧化法:电化学氧化法就是指的阳极电解氧化法。由于增加了大量的含痒官能团和含氮官能团,提高了碳纤维和环氧树脂的浸润性和反应性,厚街碳纤维球拍,有利于改善碳纤维复合材料的力学性能。
二、非氧化法
气相沉积法:气相沉积法是在碳纤维和树脂的界面引入活性炭的塑性界面区来松弛应力,从而提高了复合材料的界面性能。
电聚合法:电聚合法是在电场力的作用下使含有活性基团的单位在碳纤维的表面聚合成膜,以改善其表面形态和组成。
-偶联剂涂层法:偶联剂层法所采用的偶联剂为双性分子,它的官能团分别与碳纤维表面和树脂反应生成化学键,起到了化学媒介的作用, 将二者牢固的连在一起,从而提高了界面的强度。
聚合物涂层法:碳纤维表面涂覆聚铝氧烷,经过高温热处理后,碳纤维表面生成氧化铝涂层,使其性能得到提高,可与金属复合制取碳纤维增强金属基复合材料。
晶须生长法:生产晶须的过程包括成核过程以及在碳纤维表面生长非常细的高强度化合物单晶的过程。
等离子法:等离子体法主要是通过等离子体撞击碳纤维表面, 从而刻蚀碳纤维表层, 使其表面的粗糙度增加, 表面积也相应增加。
碳纤维应用领域主要有航空航天、风电叶片、体育休闲、汽车制造、压励容器、建筑和船舶等,其中航空航天领域用量占比约5% ,但是却贡献了39%的市场份额。自1903年飞机问世以来,飞机机身材料多次更换,都是向着高强度、轻量化、长寿命的方向稳步发展。而碳纤维复合材料则能够很好的满足这些要求,其密度仅有1.7g/cm3 ,长安碳纤维球拍,是传统减重材料铝合金的60% ,力学性能以及抗老化性能均要优于传统结构材料。尤其近些年来,
随着碳纤维复合材料技术的突破,在机身材料中占据了主体地位。以空客民航客机为例, 2014年12月22日交付于卡塔尔航空A350客机,其复合材料占比就已经占到飞机整体材料的50%以上。
作为新-代战略新兴材料,碳纤维将对航空航天、汽车工业、体育休闲等行业带来革命性的影响。未来随着这种复合材料在国内的量产,结合航空航天应用的强大需求,碳纤维市场必将蓄势待发、蓬勃发展。
0元加盟(图)-大朗碳纤维球拍-碳纤维球拍由东莞星河运动用品有限公司提供。东莞星河运动用品有限公司坚持“以人为本”的企业理念,拥有一支高素质的员工队伍,力求提供更好的产品和服务回馈社会,并欢迎广大新老客户光临惠顾,真诚合作、共创美好未来。星河运动——您可信赖的朋友,公司地址:东莞市南城区水濂山联科信息产业园6栋407,联系人:龚先生。